US 2005/0050069 Al

for example, all managers attending an upcoming meeting at
10 AM, the classifier can anticipate and have prepared for
delivery, or even deliver to the each manager via e-mail, an
RSD file that reflects the existing state of the database such
that all managers are working from the same “copy” of the
database. These are but a few of the variations that can be
employed in accordance with the disclosed architecture.

[0048] As indicated herein, the disclosed RSD schema
also supports segmentation, where multiple physical units
(files/resources) can be segmented and then combined into a
single logical unit. Segmentation is designed to satisfy
particular extension scenarios and to enable re-use of modu-
lar RSD components in multiple applications, as well as
improving readability and manageability of the file. In some
cases, the capability to segment files may impact the vali-
dation of the RSD file, particularly in the case of name
references to structures which can be stored in another file
segment.

[0049] Referring now to FIG. 6, there is illustrated a block
diagram of a distributed system 600 where multiple rela-
tional databases that comprise an overall database each have
respective RSD files that when retrieved can be combined to
provide a more comprehensive view of the overall database.
There is provided a first database 602 and associated first
RSD file 604, a second database 606 and associated second
RSD file 608 and, a third database 610 and associated third
RSD file 612. The databases (602, 606, and 610), disposed
on a wired or wireless network 614, can be accessed by a
client 616, such that the client 616 retrieves the one or more
of the respective RSD files (604, 608, and 612) for process-
ing either online or offline. Here, the client 616 has retrieved
the first RSD file 604 and the second RSD file 608 for use
in further processing. The client 616 can process these files
(604 and 608) separately, or combine the files (604 and 608)
into a single RSD file 618 for overall processing.

[0050] If the user has made any changes to the single file
618, this can be propagated back to the respective relational
databases whereby the single file 618 is segmented back into
its constituent files (RSD file 604 and RSD file 608) and
transmitted separately back to respective databases (602 and
606) for merging thereinto. It is further to be appreciated that
only the RSD file that incorporates the changes may need to
be transmitted back for merger with the existing database.

[0051] The client 616 may also be running separate appli-
cations such that each application runs only one of the data
files. For example, if the client were running two different
applications, a first application could retrieve and process
the first RSD file 604, and the second application could
retrieve and run the second RSD file 608. Thus, the two RSD
files (604 and 608) need not be combined for processing at
the client. Of course, in a disconnected environment, the
RSD files (604 and 608) could be stored on the client 616 for
later processing, and then uploaded to the respective data-
bases (602 and 606) when reconnected to the network 614.

[0052] Note that RSD can store much more than a single
database, where database is defined as a “catalog” in the
ANSI SQL standard. The RSD by itself can store one to
many catalogs (essentially separate schemas that are acces-
sible via the same application connection) that make up a
single database instance. However, when combined with a
Datal.ocationPolicy concept, the RSD can expose a “logical
instance” which transcends the boundaries of a single physi-

Mar. 3, 2005

cal server and allows the RSD to represent an entire network
of database instances, where logical database structures
(tables/rows) are bound to physical locations (the server/
catalog/schemaytable) at runtime based on application logic
and/or a policy file.

[0053] RSD Language

[0054] Where mapping is concerned, the RSD schema is
a logical view of the metadata required to perform efficient
mappings and provides the following: sufficient metadata
about the relational domain to allow the CQR (common
query runtime) engines to efficiently generate and/or execute
CRUD (Create, Read, Update, and Delete) operations
against the database based on actions performed in the target
domain; easily readable; easily editable; capability to seg-
ment the RSD file to improve manageability and allow
logical extensions to the relational schema; and capability to
describe any ANSI relational database. When a query is
presented through, e.g., XML, the CQR engine compiles the
query into QIL (Query Intermediate Language), optimizes it,
and generates SQL statements that can be run against the
database.

[0055] Since the database name, schema name, and struc-
ture names are already separated in the RSD format by XML
tags, RSD does not require (or allow) SQL escaping of
names in the file format. This means that if names are
specified with bracket-escaping, the brackets will be treated
as literals in the structure name. In order to prevent potential
security holes, RSD users should escape the names of all
identifiers in the RSD file. However, this is an implemen-
tation detail, in that a generic name validation engine can be
built that could accept platform-specific rule sets to describe
the name escaping rules of a particular platform. If multiple
backends are used, the capability to plug in an escaping/
validation module to the compilation process is provided.

[0056] Since RSD is intended to be database independent,
the RSD architecture only imposes naming constraints to
ensure that name references within the CQR framework are
unambiguous. RSD identifier names are escaped in name
references (but not in declarations) in the following cases:
where a “.” is present anywhere in the identifier; where it
starts with a “$” character; and a “” (white space) is present

(in relationships only).

[0057] With respect to name uniqueness in RSD, structure
identifier names (e.g., Tables, Custom Tables, Views,
StoredProcedures, and UserDefinedFunctions) belong to the
same namespace and must be globally unique within the
logical RSD (the union of all the physical segments). The
Custom Tables mapping feature is described in greater detail
hereinbelow. Note, however, that these are implementation
details specific to SQL Server. These name validations could
follow different rules in a different database management
system.

[0058] For validation specific to SQL Server, the follow-
ing rules apply. Structures (e.g., Tables, Views, UserDe-
finedFunctions, StoredProcedures, and CustomTables) have
a unique 3-part name within the scope of the logical RSD.
For stored procedure naming in SQL Server, on file genera-
tion, the number for the stored procedure is concatenated to
the name of the procedure using the canonical SQL format
spName;number. On file generation, if the number is “17, the
generating code can omit the semi-colon and the number.



